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Abstract
The most suitable paradigms and tools for investigating the structure of granular
packings are reviewed and discussed in the light of some recent empirical
results. I examine the ‘typical’ local configurations, their relative occurrences,
their correlations, their organization and the resulting overall hierarchical
structure. The analysis of very large samples of monosized spheres packed
in a disorderly fashion, with packing fractions ρ ranging from 0.58 to 0.64,
demonstrates the existence of clear relations between the geometrical structure
and the packing density ρ. It is observed that the local Delaunay and Voronoı̈
volumes have distributions which decay exponentially at large volumes, and
have characteristic coefficients proportional to ρ. The average number of
contacts per sphere grows linearly with ρ. The topological density increases
with ρ and it is larger than the corresponding one for lattice sphere packing.
The heights and the shapes of the peaks in the radial distribution function
also depend on ρ. Moreover, the study of several other quantities, such as
the dihedral angle distribution, the fractions of four-, five-and six-membered
rings and the shape of the Voronoı̈ cells, shows that the local organization has
characteristic patterns which depend on the packing density. All the empirical
evidence excludes the possibility of the presence of any crystalline order, even
at the minimal correlation length (one bead diameter). Moreover, icosahedral
order and other close packed configurations have no statistical significance,
excluding therefore the possibility that geometrical frustration could play any
significant role in the formation of such amorphous structures. On the other
hand, the analysis of the local geometrical ‘caging’ discloses that, at densities
above 0.601, the system can no longer explore the phase space by means of local
moves only and it becomes trapped either in the basin of attractions of inherent
states, with limiting densities in the range 0.61–0.64,or in the crystalline branch.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In order to fully classify the state of a disordered system, such as a granular packing at rest,
complete information about the exact position, orientation and shape of each grain is—in
principle—needed. However, part of such information is redundant or irrelevant and several
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degenerate states with different microscopic realizations can share the same macroscopic
properties. Identifying which are the accessible configurations at local level and understanding
which are the possible combinations of such local configurations for generating the global
packing is of fundamental importance and it is the necessary starting point for any further
understanding of these systems.

Until now the empirical investigation of the geometrical structure of these systems has
been limited by the very low availability of accurate experimental data. Following on from the
seminal works of Bernal, Mason and Scott [1–3], only very recently has the use of tomography
allowed one to ‘see’ three-dimensional structures and explore their geometry from the grain
level up to the whole packing.

To our knowledge, the first work which uses tomographic techniques devoted to the
investigation of granular packing was a paper by Seidler et al appeared in the year 2000 [4].
Two other works, by Sederman et al [5] and Richard et al [6], followed respectively in 2001
and 2003. Confocal microscopy techniques have also been used to reconstruct 3D images of a
dense packing emulsion of oil droplets [7] and to count contacts in glass beads [8]. However,
all these works concern rather small samples and focus on particular topics. In this paper
we refer to an empirical investigation by means of x-ray computed tomography on very large
samples of monosized spheres packed in a disorderly fashion with packing densities ranging
from 0.58 to 0.64. (Recall that the density is defined as the fraction of the volume occupied by
the balls divided by the total volume of the region of space considered.) The empirical results
were presented in a preliminary form in [9] and in a more complete form in [10]. These studies
are the largest and the most accurate empirical analysis of disordered packings at the grain
scale ever performed. A detailed description of the experimental methodology and apparatus
is reported in the papers [9, 10]. Let us recall here that we analysed six samples of monosized
acrylic spheres all in a cylindrical container with an inner diameter of 55 mm with rough
walls, filled with equal sized beads to a height of ∼75 mm. In order to verify possible effects
due to gravity and sizes we used two kinds of acrylic spheres, with diameters d = 1.00 mm
and d = 1.59 mm, with polydispersities within 0.05 mm. The smaller spheres were used to
prepare two samples at densities 0.586 and 0.619 containing respectively about 103 000 and
143 000 spheres (referred as samples A and C hereafter), whereas with the larger spheres we
prepared four samples at densities 0.596, 0.626, 0.630 and 0.64 (samples B, D, E and F) each
containing about 35 000 beads. An x-ray computed tomography apparatus (see [11]) was used
to image the samples. The two large samples (A, C) were analysed by acquiring data sets of
20003 voxels with a spatial resolution 0.03 mm, whereas for the other four samples (B, D,
E and F) we acquired data sets of 10003 voxels with a spatial resolution of 0.06 mm. The
positions of the centres of each of the sphere were retrieved (with a sub-voxel precision) by
a convolution method applied to the segmented [12] data sets (see [9, 10] for further details).
The geometrical investigation of the packing structure was performed over a central region
(G) at four sphere diameters away from the sample boundaries. (Note that spheres outside
G are considered when computing the neighbouring environment of spheres in G.) The two
large samples have about 56 000 and 92 000 spheres in G, whereas the four smaller ones have
about 16 000 spheres in this region.

In the present paper I review several investigation techniques for studying disordered
sphere packings and I discuss the application of such techniques to the analysis of samples
A–F [9, 10, 13, 14]. The paper is organized as follows.

In section 2, the existence of four distinct density regions each associated with specific
geometrical and behavioural properties is discussed.

In section 3, local volume fluctuations in sphere packings at different densities are
analysed.
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Figure 1. Volume rendering of an ∼150 000-sphere
packing in a cylindrical container.

The average number of spheres in contact with a given sphere and their distribution in the
packings are discussed in section 4.

In section 5, stability, rigidity and jamming properties in these systems are reviewed in
the light of the empirical findings.

The structure of the contact network beyond first neighbours is analysed in section 6.
In section 7 the structural properties emerging from the radial distribution function are

reviewed in detail.
The typical local orientational symmetry and its relation with known configurations is

discussed in section 8.
Techniques for analysing local geometrical correlations between more than two particles

are discussed and applied in section 9.
Finally, the implications that the observed geometrical structure has for the system

dynamical evolution are studied in section 10.
The conclusions in section 11 summarize the main results and perspectives.
In order to help readers and allow them to skip parts or concentrate on certain topics, each

section of the paper has been designed to be self-contained, with cross-references to other
sections where necessary.

2. Four packing density regions

When equal balls are packed in a container under gravity they occupy a fraction between 55%
and 74% of the volume depending on the way the packing is formed and organized at grain
level. The densest packing is achieved by an ordered stack of balls in parallel hexagonal layers
forming the so-called Barlow packings at density ρ = π/

√
18 ∼ 0.74 [15, 16]. Volume

fractions between 0.74 and 0.64 can be produced by introducing a certain amount of disorder
(vacancies, crystalline defects, polycrystalline regions etc) starting from an ordered Barlow
packing. On the other hand, if the balls are poured into the container they arrange themselves
in a disorderly fashion and the packing results typically in densities between 0.61 and 0.62
(depending on the kinds of balls, the shape of the container, the speed and height from which
they are poured). Larger densities up to around 0.63 can be reached by gently tapping the



S2364 T Aste

Table 1. Sample density and the intervals of variations (±) within each sample; number of spheres
in the sample (N); number of spheres in the central region (NG ); estimated average number
of neighbours in contact (nc), average number of neighbours at a given radial distance (nt(r)
with r = 1, 1.02, 1.05, 1.1 diameters). Standard deviation (ξ) calculated from the probability
distribution for radial distances smaller than d between pairs of sphere centres.

Density N NG nc nt(1) nt(1.02) nt(1.05) nt(1.1) ξ/d

A 0.586 ± 0.005 102 897 54 719 5.81 ± 0.3 3.0 5.5 6.7 7.5 0.014
B 0.596 ± 0.006 34 016 15 013 5.91 ± 0.2 2.9 5.9 6.8 7.7 0.011
C 0.619 ± 0.005 142 919 91 984 6.77 ± 0.2 3.5 6.4 7.5 8.4 0.013
D 0.626 ± 0.008 35 511 15 725 6.78 ± 0.2 3.3 6.0 7.5 8.4 0.017
E 0.630 ± 0.01 35 881 15 852 6.95 ± 0.2 3.4 6.3 7.6 8.6 0.016
F 0.640 ± 0.005 36 461 16 247 6.97 ± 0.2 3.3 6.9 7.9 8.9 0.011

container, whereas to achieve the so-called random close packing limit at approximately
0.64 it seems necessary to add a small compression from above while tapping (see [9, 10]).
Controlled vertical taping of a stack of grains in a tube has been used in several works [17–20]
to induce progressive densification in the system and it has been noted that a steady plateau
at densities comparable to the density obtained by simply pouring the grains can be obtained
in a reproducible way by tuning the induced maximal acceleration to between 1 and 6 times
the gravitational one [20]. All the available data in the literature indicate that densities above
0.64 cannot be achieved without partial crystallization. Densities below 0.60 can only be
achieved by special treatments of the system. In particular in [17–20] loose packing densities
in the range 0.577–0.583 were obtained by flowing dry nitrogen through the container from
the bottom. Loose packings at densities 0.58–0.59 can be also produced by using a special
technique which has been known for thousands of years and it was used by the sellers of dry
grains to increase profits by improving of about 10% the volume occupied by the granular
packing. This technique consists in pouring the spheres into the container with a stick inserted
inside and slowly removing the stick after pouring. Intermediate densities (0.59–0.61) can be
produced by shaking these loose structures. However these intermediate values are not stable
under shaking and any action tends to densify the system up to the region between 0.61 and
0.63 within which the density can be increased or decreased in a reversible way depending
on the kind of action performed on the system [17–20]. The lowest achievable limit for a
stable packing is 0.555 (which coincides with the dilatancy onset) but such a limit can only be
reached by reducing the effect of gravity [21].

In [9, 10] we observed that typically the density is not homogeneously distributed in
different parts of the samples. This is also discussed by several other works (see for
instance [19, 20]). In the samples A–F the densities are smaller than the average in a region
close to the cylinder central axis; the density increases moving forward from the centre, then it
saturates to rather homogeneous values up to a distance of a few (2–3) sphere diameters from
the boundary. Rather inhomogeneous densities are also observed in the vertical direction, but
in this case we find different behaviours depending on the sample preparation. However, we
verify that in all the sample sub-regions the densities stay in a rather narrow range (within
±0.01) around the average densities. More importantly we verify that none of the computed
structural properties change significantly in their behaviours and characteristics with the part
of sample analysed. In the second column of table 1, the average density values for samples
A–F and their intervals of variation are reported.

Summarizing, from all the empirical investigations available in the literature we can deduce
that there are four rather well defined density regions: 0.55–0.58 where packings can be
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created only if the effect of gravity is reduced; 0.58–0.61 where packings can be generated
but they are unstable under tapping; 0.61–0.64 where reversible structures can be created
by pouring grains into the container and tapping for sufficiently long times (however it is not
completely established whether the region 0.63–0.64 can be reached only by tapping or whether
some combined compression must be added); 0.64–0.74 where crystallization is present. The
challenge is now to establish whether there is a unique ‘smooth’ bijective relation between
the sample density and its packing structure and whether such a structure is independent of
the preparation procedure. The results reported in [9, 10] and the one discussed in the present
paper are rather encouraging, showing that all the structural properties have a rather simple
and monotonic dependence on the density. This suggests that the static state of the system can
be uniquely identified by its density which is therefore the most relevant control parameter in
monosized sphere packings. A very relevant point is now to understand which is the typical
combination of local configurations which generate a packing at a given density and why the
realizations of the system are naturally possible only within a restricted range of densities.

3. Local volume fluctuations

In this section we discuss how space is repartitioned around the spheres. Indeed, in a given
packing some local configurations are closer and others are looser and the whole packing is
made by gluing these local configurations together in a disordered way which is compatible
with mechanical stability, geometrical constraints and global density. The first problem to
address is how to divide the whole space into parts associated with the local environment
around each sphere. In this respect, there are two natural ways to subdivide space into smaller
portions. The first is the Delaunay decomposition, by which space is divided into simplexes
with vertices on the centres of the neighbouring spheres chosen in such a way that no other
spheres in the packing have centres within the circumsphere of the Delaunay simplex. The
second possibility is the Voronoı̈ decomposition which associates with each sphere a polyhedral
cell delimiting the portion of space closest to the sphere centre with respect to any other centre
in the packing. These two decompositions are geometrically dual and can be combined in
several ways leading to other classes of decompositions (Q-systems and stars) [16].

The study of how space is shared among the packed spheres is essential for understanding
how efficiently the spheres are arranged locally. Moreover, from a theoretical perspective it
has been argued by Edwards [22, 23] that granular systems under tapping dynamics in the
stationary regime can be described in terms of a Gibbs-like equilibrium thermodynamical
approach where the constraint over the system energy is replaced with a constraint on the
volume. This implies that the probability of a state with volume V must follow a Boltzmann
distribution: P(V ) ∝ exp(−V/(λX)), with X the ‘compactivity’ (an intensive thermodynamic
variable analogous to the temperature) and λ a constant analogous to the Boltzmann one. In a
recent paper [24] Edwards and co-authors showed that the local volume fluctuations in a dense
packing of emulsion oil droplets do indeed follow quite well an exponential distribution with
coefficient λX = 119.

In [13] we subdivided the samples into their Delaunay simplexes and calculated the volume
of each simplex. We observed that such volumes follow distributions which, at large volumes,
are well described by the exponential behaviour P(v) ∝ exp(−βv/d3) (see figure 2). We
found that the coefficients β grow with the density ranging between ∼44 at ρ = 0.586 (sample
A) and β ∼ 73 at ρ = 0.64 (sample F) (see figure 2(b)). The plot of β−1 versus ρ reveals an
impressive linear behaviour. Very similar behaviours and coefficients were also found for the
distributions of the Delaunay ‘free’ volumes (the part of the Delaunay simplex not occupied
by the balls).
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Figure 2. (a) Distribution of Delaunay
volumes in G. (a1) Best fit values for
the coefficients β−1 versus the inverse
of the sample density ρ−1. (b) The
inverse normalized cumulants show tails
that decrease linearly on a semilogarithmic
scale: p(V ) ∼ exp(−βV/d3) (best fits:
β = 43.9; 45.4; 55.2; 64.6; 66.8; 72.9).

As discussed at the beginning of this section there are several ways to divide the whole
space into sub-parts and the Voronoı̈ construction is one of the most commonly used partitions.
In order to verify the effect of the partition criteria on the local volume distributions, we
calculated the volume distribution of the Voronoı̈ cells constructed around the centres of each
sphere in the samples. Figure 3 shows the distributions (P(v)) of these local volumes in G
for the six samples. In this case we observe bell-shaped distributions with a clear skewness
and fatter tails on the right-hand side. In figures 3(b), (b1) we show that the tails of such
distributions can be interpolated with an exponential trend: P(v) ∝ exp(−β ′v/d3) [13].
However, such a linear trend is less neat than in the Delaunay case and the coefficients β ′ are
about 20% lower than the coefficients calculated from the Delaunay simplex decomposition.
Such differences in the behaviours and the values of the coefficients pose a serious question as
regards which kind of volume partition is more appropriate for the estimation of such quantities.

From a theoretical point of view, we can consider the whole system as an ensemble of
local independent cells which freely exchange volume among themselves under the constraint
that the sum over all the volumes must be a constant which characterizes the state of the
system. If we assume that: (1) cells are undistinguishable (ignore their shapes); (2) there are
no correlations among cells; (3) the geometrical constraints on the packing (stability, kissing
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Figure 3. (a) Distribution of Voronoı̈
volumes in G for the six samples. (a1)

Best fit values for the coefficients β−1

versus the inverse of the sample density
ρ−1. (b) The inverse normalized cumulants
show tails that decrease rather linearly on
a semilogarithmic scale. (b1) Detail of
the region where the fit with p(V ) ∼
exp(−β ′V/d3) has been performed (best fit
values: β ′ = 34.3; 33.2; 43.5; 51.7; 58.9).

number etc) have no relevance, then the probability of finding a cell with a volume v must
be simply given by P(v) ∝ exp(−βv/d3), with β = d3/〈v〉. Indeed, the above assumptions
reduce the problem to the one-dimensional partitioning into several parts of a segment of size
V and the probability distribution of the cell sizes can be calculated exactly. However, this
simple argument predicts coefficients which are not satisfactory: we obtain β � 36ρ/π for the
Delaunay partition and β = 6ρ/π for the Voronoı̈ partition, giving values for the coefficients
which are an order of magnitude lower than the empirical coefficients. On the other hand, it is
also evident from the figures 2 and 3 that these distributions are not pure exponentials. Further
theoretical investigations are needed the explain such behaviours.

4. Number of spheres in contact

The average number of spheres in contact with a given sphere is probably the most commonly
investigated parameter in the literature on granular packings [1–5, 8, 16, 25–29]. Indeed,
this is a very simple topological quantity which gives important information about the local
configurations and the packing stability and determines the cohesion of the material when



S2368 T Aste

liquid capillary bridges between particles are present. Moreover, historically this was the first
topological quantity investigated in these systems [1, 2, 25]. Unfortunately, although simple in
its definition, such a number is unavoidably an ill-defined quantity. Indeed, from a geometrical
perspective, the information about the positions and eventually the sizes of all spheres is not
sufficient to determine such a number: two spheres can be arbitrarily close but not touching. In
the literature several physical methods have been used [1, 2, 8, 25],but they encounter problems
all essentially associated with the uncertainty in the correct threshold distance which must be
used to distinguish between ‘touching’ and non-touching spheres. In an early experiment [25]
Smith poured lead shots into a beaker and then filled the beaker with a solution of acetic acid.
The acid was then drained but a small ring of liquid was retained by capillarity at each contact
point. After a few hours, white circular deposits at the contact positions were visible on the
shots. The counting of the number of such marks on each shot led Smith to conclude that the
number of contacts increases with the density and it is in the range between 6.9 and 9.14 for five
samples with densities from 0.553 to 0.641. However, this early experiment is now considered
not completely reliable because capillary necks of acid can also form between near but non-
touching spheres and because the density 0.553 appears to be too small for a stable packing of
monosized spheres under gravity (see section 2). A more precise but similar experiment was
performed by Bernal and Mason about 30 years later [1]. In this experiment they used ball
bearings compressed with a rubber band making a packing with density 0.62. The number of
contacts was calculated by counting the number of marks left on the balls by a black japan paint
after drainage. Unlike Smith, they distinguish between touching balls and ‘nearly touching’
balls, reporting an average number of touching spheres equal to 6.4 over an average number
of 8.4 total marks. They estimated that with this method nearly touching balls are registered
up to a distance 5% greater that the ball diameter. The same method, applied to a less dense
packing with ρ = 0.6 (obtained by slowly rolling the balls in the container), gave 5.5 for the
average number of touching spheres and 7.1 on adding the ‘nearly touching’ balls. In another
experiment, a different method was adopted by Scott [2], who poured molten paraffin wax into
a heated container filled with the balls packed at ρ = 0.63 and allowed the set-up to cool. In this
way, after a great effort, he managed to calculate the Cartesian coordinates of a central cluster
of about 1000 balls with a remarkable precision of less than 1% of their diameters. From
these centre positions he computed an average number of 9.3 spheres within 1.1 diameters
from the centres of the test spheres. However, a re-analysis of the same data [3] led Mason
to conclude that there are about five touching spheres and a total of nearly seven neighbours
within 1.02 diameters. (Later in this paper we will re-discuss this estimation in the light of a
new method which yields a value around 7 for the number of spheres in contact.) Surprisingly,
after this remarkable experiment by Scott, no further empirical investigations were performed
until very recently when new techniques (confocal microscopy and x-ray microtomography)
allowed visualization of the inside of the packing structures. In 2000, Seidler et al performed
the first x-ray microtomography experiment on a monodisperse packing of glass spheres at
density ρ = 0.61. They estimated the sphere centres with a precision of 1% diameters and
calculated that there are an average of 8.3 neighbouring spheres within 1.06 diameters. In a
recent experiment [8], the number of liquid bridges between glass beads in packings at density
0.62 were measured by zooming with an optical microscope. It was estimated that within
a radial distance of 1.05d , the number of neighbouring spheres must stay within the range
6 ± 1.5.

In the present paper we discuss the results reported in [9, 10] where the number of spheres
in contact and the distribution were calculated with great accuracy for the six samples A–F with
densities ranging between 0.578 and 0.64. Table 1 reports the values of the average numbers
of neighbours (nt) computed in G at the four different radial distances: r = d , 1.02d , 1.05d
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Figure 4. (symbols) Behaviour for the average number of sphere centres within a radial distance
r . (lines) Error function normalized by best fitting the agreement with the data in the region r < d.
The averages are d and the standard deviations (ξ) are calculated from the probability distribution
for radial distances smaller than d between pairs of sphere centres. The renormalized error function
fits well to the data for r < d. After this value, near neighbours not in contact start to contribute to
nt(r) and the two behaviours split.

and 1.1d . As one can see, this number increases with the radial distance and, across the six
samples, nt ranges between 3 and 8.9 depending on the threshold distance and sample density.
A more precise estimate for the actual number of spheres in contact can be inferred from the
behaviour of nt(r) (shown in figure 4 as a function of the radial distance up to r = 1.1d).
From figure 4 one can note that above r = 0.98d the number of neighbours grows very steeply
up to a ‘knee’ at about 1.02d , where a slower growth takes over. Such a steep growth in the
number of neighbours can only be an effect of the spread in the statistical distribution of the
distances between spheres in contact which is due to the polydispersity and the uncertainty
in the positions of the sphere centres. Indeed, in the ideal case where all the exact positions
of closely packed, identical, perfect spheres are known, one would expect nt(r) to have a
discontinuity at r = d (from zero to the number of neighbours in contact nc) followed by some
kind of growth for r > d . For real, polydisperse, non-perfect, spheroidal grains, the distance
between elements in contact is not a fixed value but instead it is normally distributed. As a
consequence, one expects the discontinuity at r = d to enlarge into a complementary error
function. Such an error function must be added to the contribution from the ‘nearly touching’
spheres which is expected to become sizable from r > d . We therefore expect to find an error
function behaviour up to r ∼ d and then a combined contribution from the error function and
some growing law describing the cumulated number of non-touching neighbours within the
distance r . Indeed, we verify that the behaviour of nt(r) for r � d is very well described by a
complementary error function normalized to nc:

nt(r)fit = nc
1

√
2πξ2

∫ r

−∞
exp

(
− (x − d)2

2ξ2

)
dx . (1)

The value of the mean d is the average sphere diameter which was estimated: d = 25.00
voxels (samples B, D, E, F) and d = 30.81 voxels (samples A, C) [9, 10]. On the other hand,
the variance ξ can be directly calculated from the data by computing the second moments
〈(r − d)2〉 for the radial distances between spheres calculated over half the distribution in the
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region r < d:

ξ = 2

√∑
i, j (ri, j − d)2 H (d − ri, j )

∑
i, j H (d − ri, j )

(2)

with i, j indices labelling the sphere centres; the symbol ri, j indicating the distances between
the centres of spheres i and j ; and H (d − ri, j ) the step function which returns 1 if ri, j < d
and 0 if ri, j � d . From equation (2) we retrieve variances ξ between 0.011d and 0.017d (all
the values are reported in table 1). These values are consistent with the bead polydispersity
and are significantly larger than the estimated uncertainty on the sphere centres. The only free
parameter left in equation (1) is the value of nc which can now be computed by best fitting the
agreement between the data for nt(r) and the function nfit

c (r) in the region r < d . In figure 4
it is shown that the function nfit

c (r) fits well to the data for r < d by using the values of nc

given in table 1. At larger distances r > d , near neighbours not in contact start to contribute
to nt(r) and the two behaviours split. We estimate that in the six samples A–F there are on
average between 5.81 and 6.97 spheres in contact (see table 1). These numbers fall in the
range of the values for nc reported in the literature based on some of the previous experimental
observations (Bernal reports nc = 5.5 at ρ = 0.6 and nc = 6.4 at ρ = 0.62 [1], whereas from
the data given by Scott we have nc = 7 at ρ = 0.63 [2]). (Note that this last datum has been
recalculated from the original data by applying the deconvolution method described above.)

In figure 5 the values of nc versus density for the samples A–F are reported together with
those from Bernal and Scott. As one can see, they all result in a rather good agreement. Such an
agreement between these different data is remarkable considering the different experimental
set-ups, the different preparations of the samples, the different criteria for identifying and
counting spheres in contact and the different polydispersities of the spheres. As one can see
from figure 5, they all show a clear and consistent increasing behaviour with the density. A
similar increasing trend was also found in simulated packings [30, 31].

This dependence on the packing density has important theoretical implications which are
discussed in the next section. But, before concluding this part, let me introduce a simple
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Figure 6. Distribution of the number of near neighbours at radial distances within 1.05 sphere
diameters. The thick line is the theoretical behaviour predicted by a free-volume-like local theory
(equation (4)) with n∗ = 12.99.

theoretical argument to calculate the distribution of the number of neighbours around each
sphere. Let us consider a local configuration composed of one sphere and n touching
neighbours. First, let us compute the degrees of freedom of such a system in terms of the
volume which can be explored in their configurational space. In particular, each one of the
n surrounding spheres can span a solid angle of 4π but the non-overlapping condition implies
that spheres cannot stay arbitrarily closed. It is indeed known that only 12 equal spheres can
stay touching a central sphere (the kissing number [16]). However, the solid angle occupied
by a sphere touching the central sphere is 4π/n0 with n0 = 4/(2 − √

3) = 14.928, . . ., which
means that it occupies less than 1/14 th of the total solid angle. This was the source for a famous
discussion between Isaac Newton and David Gregory in 1694. Newton correctly believed that
no more than 12 spheres can be packed touching a central sphere but Gregory thought that
there might be a way to put 13. Indeed, there is a lot of available free space when 12 spheres
are packed around a central one but not enough to accommodate 13. To calculate the free solid
angle per sphere, we can therefore assume that each touching sphere occupies an ‘effective’
portion 4π/n∗ of the total solid angle with n∗ a number smaller than 13. For a configuration
of n spheres around a central sphere we have consequently that the portion of solid angle, in
which the particles can move freely is 4π − n4π/n∗. From a different perspective this system
can be viewed as a ‘gas’ of n particles in a box of volume 4π − n4π/n∗ (n∗ < 13). The
integration over the angular degrees of freedom of the n touching spheres gives a partition
function of such a ‘gas’ which can be approximated as

Zn =
(

4π − 4π
n

n∗

)n

(3)

(where we used a free-volume kind of approximation [32]). In such a system the probability
of a state with n touching neighbours must be

p(n) = (4π − 4π n
n∗ )

n

∑
n Zn

. (4)

In figure 6 the distributions of the number of near neighbours per sphere (within a distance
1.05d) are reported for the six samples. As one can see, the behaviour predicted by equation (4)
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mimics well the empirical distributions using n∗ = 12.99. This seems to indicate that
the packing configurations form—in an almost unconstrained way—by maximizing local
rotational degrees of freedom.

5. Stability, rigidity and jamming

In a stack of grains at mechanical equilibrium, Newton’s equations for the balance of the force
and torque acting on each grain must be satisfied. Lagrange and Maxwell [33, 34] were the
first to note that in such systems, to achieve stability, the number of degrees of freedom must
balance the number of constraints. If we consider a packing of N perfect, smooth spheres,
a simple counting (known as Maxwell counting) gives 3N degrees of freedom (translational
modes) and nc N/2 constraints (one normal force per contact, nc contacts on average and each
contact shared by two spheres). In this case, the balance between freedom and constraints
implies that nc must be equal to 6 [35, 36]. On the other hand, real grains (for instance the
acrylic beads in samples A–F) have unavoidably rotational modes and therefore the degrees of
freedom number 6N (translational and rotational modes). Moreover some friction is always
present; therefore tangential forces must also be considered yielding 3nc N/2 constraints on the
contacts (three components of the force per contact, nc contacts on average and each contact
shared by two spheres). In this case the counting gives nc = 4. This counting is rather
encouraging: a very simple argument gives values for nc which are close to the one observed
experimentally. However, it must be noted that this condition for nc is neither sufficient nor
necessary [37–39]. Indeed, there can be local configurations which contribute to nc but do not
contribute to the whole system rigidity. (There are, for instance, the ‘rattling’ grains which can
be removed from the system without affecting its stability.) On the other hand, there are local
arrangements which satisfy the counting rule on nc but nevertheless are not rigid [37, 38].

In recent years there have been a large number of theoretical approaches which consider
real, disordered, granular packings to be isostatic (free of self-induced stresses) [35, 40].
The advantage is that in a system at the isostatic equilibrium, the intergranular forces are
uniquely determined by the balance of force and torque alone. In contrast, an overconstrained
structure can generate self-stress and the deformation of individual grains becomes relevant.
In real granular materials (or in bead packings) friction and rotational degrees of freedom are
unavoidable; therefore the Maxwell counting implies that isostatic configurations must have
the average connectivity nc = 4. Unfortunately, such a value is rather small in comparison with
all the available empirical estimations. Moreover, all the experimental observations conclude
that nc increases with the packing density, excluding therefore the possibility of fixing nc at 4
for all stable packings.

However, in related studies on the rigidity in network glasses [39, 41] it has been observed
that there can exist two phase transitions associated with the increase of connectivity in a
network: a rigidity percolation and a stress percolation, and between these two thresholds
an intermediate phase which is rigid but unstressed. The rigidity percolation occurs at the
threshold predicted by the Maxwell counting (nc = 4) and it resembles a second-order
transition. Whereas the stress percolation transition occurs at a higher value of nc, it is
much sharper and it could be a first-order transition [41]. This suggests that granular packings
might be in a marginal state between the rigidity and the stress percolation thresholds. In
such an isostatic unstressed state, the system has zero elastic moduli (in the thermodynamic
limit) [39, 41]; it is therefore marginally rigid and it can be seen as in an intermediate state,
between fluid and solid [42]. An extrapolation from the experimental data for nc reported in
figure 5 suggests that a grain connectivity equal to 4 could be reached by the system at the
density ρ = 0.55. This would place the rigidity percolation threshold at the loose packing
limit.



Variations around disordered close packing S2373

Another alternative paradigm, mostly used in computer simulations, considers the
‘jamming’ state. A particle (or a set of particles) is considered jammed if it cannot be translated
while fixing the positions of all the other particles in the system [43]. Such a definition was
extended by Torquato and Stillinger [28] to different degrees of jamming (local, collective and
strict). This approach is very useful in molecular dynamics and other numerical simulations
where the system dynamics is involved and the local and collective particle displacements are
studied [44]. The conceptual framework associated with this approach is rather similar to the
approach used for rigidity, but in this case dynamical properties are considered instead of the
static ones. Generally speaking, a rigid state must be a jammed state, but when molecular
dynamics simulations are involved, the system is characterized by the state of motion of its
elements instead of the static network of forces between elements. In this context the study of
the jamming configurations becomes essential for understanding the mechanism which leads
to structural arrest. From the perspective of the present study an opposite point of view must
be adopted. The question is: starting from the static—jammed—configuration, can we infer
the dynamical mechanisms which have produced such a packing? The present paper is an
attempt to give some answers in this direction and section 10 specifically addresses this point.

6. Contact network: the topological structure beyond first neighbours

Any force path or any infinitesimal local grain displacement must mechanically propagate
from grain to grain through the network of touching grains. The understanding of the
hierarchical organization of such a contact network beyond first neighbours is therefore of
great importance. Here we apply an approach which was originally developed for the study
of crystalline systems [15, 45–49] and disordered foams [50–52]. The topological structure of
crystalline frameworks has been intensively studied in terms of the number of atoms that are
j bonds away from a given atom [15, 45–49]. If we start from a given ‘central’ atom, the first
‘shell’ (distance j = 1) is made by all the atoms in contact with the central one. The second
shell (distance j = 2) is constituted of all atoms which are neighbours to the atoms in the first
shell excluding the central one. Moving outward, the atoms at shell j + 1 are all the atoms
which are bonded to atoms in shell j and which have not been counted previously. In infinite,
periodic, crystalline structures with no boundaries, the number of atoms per shell should
increase with the topological distance and it has been shown that in several three-dimensional
crystalline structures the law of growth for the number of atoms (K j ) at shell j can be given as
K j = a j j 2 + b j j + c j (with a j , b j and c j , coefficients that might vary with j but only within a
bounded finite interval) [15, 45–49, 53]. Following the definition of O’Keeffe [48], for these
crystalline systems, the asymptotic behaviour of K j can be characterized in terms of an ‘exact
topological density’: TD = 〈a j 〉/3 [53]. It has been noted that such a topological density is
interestingly related to the geometrical density of the corresponding crystalline structure and
it is a powerful instrument for characterizing such systems. For instance, it is easy to compute
that the cubic lattice has K j = 4 j 2 +2, whereas it has been shown [15] that for Barlow packings
of spheres, the K j are always in a narrow range, within

10 j 2 + 2 � K j �
⌊

21 j 2

2

⌋
+ 2 ( j > 0), (5)

with the lower and upper limits corresponding respectively to the fcc (face centred cubic) and
hcp (hexagonal close packed) packings. On the other hand, spheres packed in a bcc (body
centred cubic) crystalline arrangement have K j = 6 j 2 + 2 ( j > 0).

Beyond perfect crystalline order very few results are known either from theoretical,
empirical or numerical points of view. Without much effort one can argue that K j must
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grow with a law comparable with the law for a spherical shell: K j ∼ aj 2 ∼ 4π j 2. However, it
is also clear that the shape of the growing shell and its roughness can substantially change the
coefficient a (as observed in two-dimensional cases [50, 54]). Moreover, it can be shown [55]
that in some topological networks the law of growth can follow an intrinsic dimension which
is different from the dimension of the embedding space (3 in our case). This mechanism can
produce power law growth with exponents different from 2, or different behaviours such as
exponential—or even faster—laws of growth [55].

In [9, 10] we reported empirical observations for such a law of growth for disordered
packings of nearly equal sized spheres (samples A–F). A precise estimation of the neighbours
in contact is quite important also for this kind of measure because this determines the kind of
contact network to examine. We observed that the number of spheres at a given topological
distance j from a central sphere follows quite accurately a quadratic law: K j = aj 2 + c1 j + c0

(see figure 8), with a coefficient a which increases with the threshold δ for the radial distances
within which we consider spheres to be connected in the contact network. Such an increment
is expected since an enlargement of the threshold distance must correspond to a thickening of
the shell. We verify that for threshold distances in the range between 1.02d and 1.1d a rather
linear increment is observed: a � bδ + a0 (typically with b ∼ O(1)). Such a law suggests
that the topological density must be associated with the value of the coefficient a at δ = 0:
TD = a0/3. The measured values of the topological densities for all the samples A–F are
reported in table 2. They all stay in a rather narrow range around 8.5 and they slightly tend to
increase with the sample density. A view of the topological shell structure constructed from a
given central sphere in one of the samples is shown in figure 7.

It has been observed by O’Keeffe and Hyde [56] that for lattice sphere packings (crystals
where the first neighbours are all at the same geometrical distance) a general rule holds:
K j = (nc − 2) j 2 + 2, giving TD = (nc − 2)/3. It is interesting to verify whether this
rule is satisfied also for disordered sphere packings. In [10, 14] we found that surprisingly
for all the disordered packings investigated the topological density is always larger than in
the corresponding lattice packing. Such a larger topological density is an indication that the
contact network is more compact for disordered systems despite the fact that the geometrical
density is lower. This fact might have important implications for the system stability and
resilience against perturbations and shocks.

So far we have discussed the static structure of the contact network for a given, fixed
packing realization. The challenge is to understand its dynamical evolution, its stability and
its fragility in response to external actions. Indeed, such a network is extremely sensitive to
infinitesimal displacements and it can readjust its structure by means of infinitesimal—zero-
energy—moves. The results discussed above indicate that the average properties are related
to the sample density. The relevant structural parameter appears to be the topological density
which in turn is related to the curvature in the law of growth for the number of grains versus
topological distance: 2a = K j+1 + K j−1 − 2K j . Such a curvature (including its fluctuations)
is probably the most important control parameter in the contact network. Its relevance was
highlighted in two dimensions [50–52] but its study in the three-dimensional case is still to be
undertaken.

7. Radial distribution function

The radial distribution function (g(r)) is the probability distribution of finding the centre of
a particle in a given position at distance r from a reference one. This measurement is widely
used in geometrical characterization of packing structures and contains information about long
range interparticle correlations and their organization [2, 3, 57].
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Table 2. Topological densities (3TD = a0). Most recurrent values for the local orientation order
(Q̂4, Q̂6). Fraction of local configurations with (Q4, Q6) in the range (Q̂4 ± 0.05, Q̂6 ± 0.05)

(dis). Fraction of local configurations close to special forms of order: fcc with (Q4, Q6) in the
range (0.191 ± 0.05, 0.574 ± 0.05); hcp with (Q4, Q6) in the range (0.097 ± 0.05, 0.485 ± 0.05).

3TD r threshold (Q̂4, Q̂6) Disorder (%) fcc (%) hcp (%)

A 7.2 ± 0.3
1.1 (0.27, 0.47) 23 3 1
1.2 (0.22, 0.42) 32 2 3
1.3 (0.18, 0.40) 38 1 5
1.4 (0.15, 0.36) 42 2 4

B 7.2 ± 0.4
1.1 (0.30, 0.45) 24 3 1
1.2 (0.23, 0.44) 32 2 3
1.3 (0.16, 0.38) 37 1 5
1.4 (0.14, 0.35) 43 2 5

C 8.7 ± 0.4
1.1 (0.23, 0.46) 28 5 2
1.2 (0.21, 0.43) 35 3 7
1.3 (0.15, 0.40) 41 1 11
1.4 (0.12, 0.37) 45 3 8

D 8.4 ± 0.3
1.1 (0.25, 0.44) 28 4 1
1.2 (0.19, 0.44) 35 2 7
1.3 (0.15, 0.40) 42 1 11
1.4 (0.11, 0.36) 46 1 8

E 8.6 ± 0.4
1.1 (0.22, 0.44) 27 5 2
1.2 (0.20, 0.43) 37 3 7
1.3 (0.15, 0.39) 42 1 12
1.4 (0.12, 0.36) 47 2 10

F 8.9 ± 0.4
1.1 (0.23, 0.44) 31 6 4
1.2 (0.16, 0.45) 38 4 12
1.3 (0.13, 0.42) 43 1 17
1.4 (0.10, 0.38) 47 3 13

In order to measure this quantity one must count the number of sphere centres within a
radial distance r from a given one. The average of this number, computed over the whole
sample (nt(r)), is related to the radial distribution function by

nt(r1) − nt(r0) =
∫ r1

r0

g(r)4πr2 dr. (6)

Therefore, given the position of the sphere centres, these two quantities nt(r) and g(r) can
be straightforwardly computed. (Some difficulties might arise for small samples, because in
this case the spherical shell at distance r from a given sphere might be incomplete and special
analytical tools must be used in order to retrieve the correct information [3].) It is easy to
compute that the asymptotic behaviour (r → ∞) for the total number of sphere centres inside
a spherical region of radius r is nt(r) ∼ 8ρ(r/d)3 (r � d). Therefore, asymptotically when
r → ∞ one expects g(r) → 6ρ/(πd3). Such a dependence on packing density and bead
sizes might turn out to be inconvenient for comparisons between different systems. Therefore,
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Figure 7. As figure 1 (with a piece removed), but where
the topological distances from a given central sphere are
highlighted in shades (colours in the online version).

often a normalized radial distribution function is used instead:

g̃(r) = πd3

6ρ
g(r), (7)

which tends to 1 when r/d → ∞.
The first experimental measurement of the radial distribution function in a packing of

equal sized spheres was performed by Scott in [2] and subsequently re-analysed by Mason
in [3]. They observed a sharp peak at 1.0 diameters (associated with spheres in contact) and
a curious ‘square’ shape of the second peak between 1.7 and 2.0 diameters. After these first
observations, unusual enlargements of the second peak and its ‘splitting’ into two peaks at
r/d ∼ √

3 and r/d ∼ 2 have been generally observed in several experiments and simulations
of monosized sphere packings [3, 4, 30, 31, 58]. The presence of peaks after the peak at
r = d is a clear indication that the system is organized: a characteristic structure with distinct
local patterns is present. To understand which kind of local configuration contributes most to
each peak of the g(r) is very important in order to work out which kind of local arrangements
generate these globally non-ordered structures. For instance, it is easy to verify that a radial
distance r/d ∼ √

3 is consistent with configurations made by placing the centres of four
spheres on the vertices of two in-plane equilateral triangles (with edge length d) which share
an edge. But it was pointed out in [30] that a large contribution to the peak at

√
3 can also

come from configurations made of five spheres placed on the vertices of two tetrahedra which
share a common face, whereas the peak at r/d ∼ 2 is due to three or more spheres which are
lying along a (rather) straight line.

Figure 9 shows the normalized radial distribution functions g̃(r) for the six samples A–F
(calculated in [9, 10]). The detail of the close neighbour region (figure 9(b)) shows that the
two peaks at r = √

3d and r � 2d both increase in height with the packing density and—
interestingly—the relative growth with the density is faster in the peak at r = √

3d with respect
to that in the peak at r � 2d (figure 9(c)). This certainly indicates an increasing organization
in the packing structure but, on the other hand, no signs of crystallization were detected (see
section 8).

For all the samples investigated, we found that the behaviour of g̃(r) at radial distances
between r � 1d and r � 1.4d (between the first peak and the first minima) can be quite
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versus topological distances. The
symbols indicate the different samples
(as in figure 4) and the lines are the best
fits using the polynomial form K j =
ai j2 + bi j + ci . These data refer to a
threshold distance 1.02d.

accurately described in terms of a power law singularity:

g̃(r) ∼ c0

|r − r0|α , (8)

with good fits for r0 = 1.03d and exponents α which increase with the sample density from
0.27 to 0.45 (figure 10(a)). A similar behaviour, but with α = 0.5 and r0 = d , was reported
in [29] for molecular dynamics simulations. A more recent numerical investigation proposes
an exponent α ∼ 0.4 [59]. In figure 10, we also highlight the growing trend of the exponent
α with the density ρ.

Interestingly, the behaviour of g(r) around the other two following peaks (at r ∼ √
3d

and ∼ 2d) can be described by using similar power law-type divergences. In particular the
region 1.4d < r < 1.73d is well fitted by the equation (8) with r0 = 1.8d and exponents α

between 0.37 and 0.62, whereas the region 2d < r < 2.15d is well fitted by using r0 = 2d
and exponents α between 0.11 and 0.17 (figure 10). We must stress that these are qualitative
behaviours: a reliable fit with a power law trend must be performed over several orders of
magnitudes on the x and y scales. These linear interpolations on log–log scales must therefore
be considered more as indicative behaviours of qualitative laws than fits.
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8. Local orientation

We have seen in the previous section that the radial distribution function clearly reveals the
existence of a structural organization: some typical lengths (associated with special local
configurations) appear repeatedly in the packing. However the fact that there are typical
local configurations which repeat often in space does not necessarily imply that there are
any long range orders or (poly)crystalline regions. In this section we quantify the kind
of local orientational order characteristic of these structures. Revealing and quantifying
orientational order is a key issue in establishing the kind of internal organization and in
particular determining whether there exists a ‘typical’ disordered state and identifying possible
tendencies towards hidden symmetries. Indeed, if such a ‘typical’ state exists or/and if there
is a tendency toward a specific local organization, then it will be possible to associate with
a given granular packing an order parameter which could measure how close the packing is
to the ‘ideal structure’. On the other hand if one can prove that the system is a collection
of uncorrelated local configurations, then this will allow us to calculate the configurational
entropy and—consequently—the probability of finding the system in a given state at a given
density.
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coefficient α depends on the sample densities and their behaviours are reported in the insets.
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Figure 11. In two dimensions, discs (spheres between two planes in this case) tend to form
spontaneously ordered hexagonal patterns which can be combined globally leading to a crystalline
order.

Balls under gravity try to minimize the potential energy by choosing a configuration
which maximizes the density. It is known that the absolute energy minimum corresponds
to an ordered arrangement in stacked planar hexagonal layers forming the so-called Barlow
packings [15, 16]. Let us first recall what happens in two dimensions, where it is possible
to ‘see’ the structural arrangement. In two dimensions, when equal discs are poured in a
disorderly fashion into a container, they tend to organize themselves locally into close packing
configurations but, at first, such a local organization is limited to very short distances yielding
an overall disordered assembly (see figure 11, top). Some shaking can increase the density,
leading gradually to an overall ordered configuration (figure 11, bottom). It has been argued
that a similar mechanism could take place in three dimensions as well. It is however clear
from several empirical observations that the tendency toward a crystalline order (even if short
ranged) is much less spontaneous in three dimensions than in the two-dimensional case. Such
a resilience against becoming ordered has often been associated with ‘geometrical frustration’,
which is present in three dimensions but not in two dimensions. Indeed, in two dimensions six
equal discs can be placed touching a given disc forming the densest possible local configuration.
Such a configuration is compatible with translational symmetry and it can be repeated infinitely
in space leading to a crystalline packing (the triangular lattice). However, in three dimensions
the closest possible local configuration is an arrangement of twelve equal spheres touching a
central sphere and with centres on the vertices of a regular icosahedron. Such a packing has
local density ρ = 0.754, . . . (which is more than 1% denser than the configurations in Barlow
packings at ρ = 0.740, . . .) [16]. But, unlike in the two-dimensional case, such a compact
local icosahedral configuration is not compatible with the translational symmetry and therefore
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it cannot be repeated in space without leaving gaps: it is geometrically frustrated. It has been
often argued that the competition between the tendency to form locally compact configurations
and the geometrical frustration could be the key to understanding the mechanism of formation
of disordered packings and glassy structures. If this is the case, we will expect to see, at the
local level, configurations with rotational symmetries characteristic of icosahedral and other
close packed structures. The study of the local rotational symmetry can therefore give insights
into the mechanism of formation of these structures.

The challenge is to find a measure of rotational symmetry which is invariant with respect
to rotations in the system of coordinates. A powerful solution was introduced by Steinhardt
et al in [27] by assigning a set of spherical harmonics to the vectors �r between a sphere and
its neighbours, Yl,m(θ(�r), φ(�r)) (with θ(�r) and φ(�r) the polar and azimuthal angles of �r ) and
introducing the quantities

Ql =
√√√√ 4π

2l + 1

l∑

m=−l

|〈Yl,m (θ(�ri), φ(�ri ))〉|2, (9)

with average 〈(· · ·)〉 over the bonds i in the sample. Such a quantity is invariant under rotations
in the coordinate system and it takes characteristic values which can be used to quantify the
kind and the degree of rotational symmetry in the system. However, it must be noted that the
quantity Yl,m(θ(�ri ), φ(�ri )) depends on the orientation; therefore in the case of a polycrystalline
aggregate, with finite correlation length, its average 〈Yl,m (θ(�ri ), φ(�ri ))〉 will decrease and
tends to zero with the sample size. To avoid this inconvenience, which makes the comparison
between values of Ql for differently sized samples meaningless, it is convenient to adopt a local
measure of Ql by restricting the average to just over the local bonds between a sphere and its
neighbours. In this way, with each sphere in the system can be associated a Ql and local order
can be singled out by counting the number of configurations with Ql corresponding to special
symmetries. In particular the two values of Ql for l = 4 and 6 have special significance.
For instance, the simple cubic lattice has (Q4, Q6)

sc = (0.764, 0.354), the body centred
cubic lattice has (Q4, Q6)

bcc = (0.036, 0.511), the fcc one has (Q4, Q6)
fcc = (0.191, 0.574),

the hcp one has (Q4, Q6)
hcp = (0.097, 0.485) and the icosahedral rotational symmetry gives

(Q4, Q6)
ico = (0, 0.663). Since the lowest non-zero Ql common to the icosahedral,hexagonal

and cubic symmetries is for l = 6, it has been argued by several authors that the value of Q6

is a good indicator of the degree of order in the system and it might be used as an ‘order
parameter’ [43, 58, 60–62]. Indeed, Q6 is very sensitive to any kind of crystallization and
it increases significantly when order appears [60]. An example of the distribution of local
(Q4, Q6) for the sample C is shown in figure 12 (data from [9, 10]).

Like for the case discussed in the previous sections, in this case the measure depends
on the geometrical criteria adopted to identify neighbours. In the literature, several different
criteria are used: in [27] all neighbours within 1.2d are considered; in [62] the neighbours up
to the radial distance which corresponds to the first minima in the radial distribution function
(r ∼ 1.4d; see section 7) were considered; in [60] and [58] the Voronoı̈ (or Delaunay [16, 63])
neighbours were used instead. This last definition might be misleading in some cases (as
pointed out by [27]), since the Voronoı̈ method tends to associate bonds also with rather distant
neighbours. For instance, an fcc crystalline arrangement (with infinitesimal perturbation) takes
two extra neighbours (from 12 to 14 on average) using the Voronoı̈ criteria. Here the influence
of the neighbouring criteria is analysed by using four different threshold distances: δ = 1.1d ,
1.2d , 1.3d and 1.4d .

We observe that a very large fraction of local configurations (between 23 and 47%) have
local symmetry characterized by (Q4, Q6) within a narrow range around their most recurrent
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Figure 12. (a) The dots are the values (Q4, Q6) plotted for all the local configurations in the
central region (G) of sample C. The lines are contour plots of the frequencies, reported in the 3D
plot of (b). The positions of specific symmetries in the (Q4, Q6) plane are also indicated (ico, bcc,
fcc).

values: (Q̂4 ± 0.05, Q̂6 ± 0.05). The values of (Q̂4, Q̂6) range between 0.10 � Q̂4 � 0.30
and 0.35 � Q̂6 � 0.45 (see table 2), values which are rather far from any special symmetry.
In order to search for signatures of known local symmetries, we measured the fraction of local
configurations with (Q4, Q6) in a region within a range ±0.05 from the values in the ideal
structures (fcc, hcp, icosahedral, sc and bcc). We found that there are no significant fractions
(below 1%) of local configurations with symmetry compatible with icosahedral, simple cubic
or bcc; there are a small fraction (between 1 and 6%) of configurations with local symmetry
compatible with fcc and there are a fraction of configurations with hcp-type local order which
becomes quite significant at large densities (reaching 17% at ρ = 0.64 and δ = 1.3d).
This occurrence of a rather large fraction of local symmetry with an hcp-like character might
suggest the beginning of a crystallization process. However, we have verified that there are
no correlations between neighbouring sites with symmetry close to hcp. This excludes the
possibility of the presence of any long range hcp order or symmetrical organization beyond
first neighbours.

These findings exclude the possibility of the existence of any crystalline order (even at local
level) and also cause us to discard the idea that a tendency toward local frustrated icosahedral
order can be the factor responsible for the resilience against crystallization for such packings.
On the other hand, these findings, although intriguing, are not conclusive because the origin
and nature of the most abundant configurations with (Q4, Q6) ∼ (0.25, 0.45) are still elusive.
In the next section we will try to clarify this point by using different techniques which allow
us to view from a different perspective the local packing organization.

9. Geometrical organization around a sphere

The radial distribution function (section 7) clearly shows that despite the fact that these systems
are amorphous and disordered, they have a characteristic structural organization which reveals
itself with regularities at local level. However, the analysis of the rotational symmetry in the
positions of the neighbouring spheres (section 8) does not disclose any known special shape.
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In this section we focus on techniques for identifying local correlations which involve more
than two neighbouring spheres.

9.1. Voronoı̈ shapes

Let us first consider the analysis of shapes of the Voronoı̈ cells constructed around the centre
of each sphere. This is a powerful tool for investigating the local arrangement of spheres
and their local organization. The advantage of such a method is that there are no arbitrary
choices for the neighbouring criteria. On the other hand, this is also the weakness of the
Voronoı̈ method because neighbours which are rather far from the central sphere (typically, up
to distances r/d ∼ 1.4) contribute to the shape of the cell. An extensive analysis was performed
by Richard et al [60] for hard sphere systems generated by molecular dynamics simulations.
They measured the variations of the average number of faces, the standard deviation and the
occurrences of faces with four, five and six edges. Interestingly, they found that the shapes of
the Voronoı̈ cells have a sharp variation in the region between the freezing and melting point
(0.495 � ρ � 0.545) but—in contrast—there are no notable modifications in their shapes
when the system passes from the fluid state to the metastable glassy phase. In this metastable
branch they observe that for 0.545 � ρ � 0.64 the average number of faces slightly decreases,
whereas the fractions of faces with five or six edges increase and the fraction with four edges
decreases. A comparison with the empirical data for bead packings can be made only for
this last ‘glassy phase’ region. In [9, 10] we observed an average number of Voronoı̈ faces
which decreases with the density from 〈 f 〉 = 14.6 at ρ = 0.586 (sample A) to 〈 f 〉 = 14.3 at
ρ = 0.64 (sample F). This is in very good agreement with simulation results [60], but it clearly
shows that this measure has very poor sensitivity to the packing properties. The fractions
of faces with four, five and six edges (respectively f4, f5 and f6) follow mixed trends: f4

decreases from 0.200 to 0.188 (from A to F); f5 increases from 0.338 to 0.396 (from A to
F); f6 increases from 0.268 to 0.286 (from A to F). Again these values and behaviours are in
very good agreement with the ones in [60], but these measures are still too insensitive to the
packing properties.

9.2. Common neighbours

An alternative interesting approach called ‘common-neighbour analysis of structure’ was
introduced by Clarke and Jónsson in [30]. They considered two close spheres which stay with
centres at a given radial distance and retrieve all the neighbours in common of these two spheres.
In general, two touching equal spheres can have a number of common neighbours between 0
and 5. This number is rather sensitive to the local correlations in the packing. Indeed, in [10]
we computed the number of common neighbours and in particular the relative occurrence of
four and five common neighbours in the six samples A–F. This study revels that the numbers of
configurations with four or five common neighbours increase during compaction (see table 3).
In particular, when the threshold distance is fixed at 1.1d , the fraction of edges with four
common neighbours ( p4) varies between 17 and 31%, whereas the fraction of configurations
with five common neighbours ( p5) grows from less than 3% to above 8% (A to F). This is in
agreement with what was observed in computer simulations and suggests that these quantities
could be profitably used as ‘order’ parameters to characterize the packing structure. Indeed,
they are much more sensitive than the equivalent quantities obtained from the study of the
shape of the Voronoı̈ cell or the Q4 and Q6 measurements. But it must be noted that these
values depend on the threshold distance used in the neighbouring criteria. However, the overall
behaviours and the relative variations are rather steady for a large range of threshold distances
between 1.05d and 1.15d .
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Table 3. The fraction of configurations with four and five common neighbours and the fraction of
configurations with a ring of five bounded common neighbours. The threshold distance is 1.1d.

p4 (%) p5 (%) 555 (%)

A 17.5 2.59 0.01
B 18.6 2.66 0.01
C 26.4 6.00 0.06
D 24.4 5.48 0.06
E 26.7 6.11 0.06
F 30.6 8.29 0.09

Clarke and Jónsson [30] describe the local environment in further detail by introducing
three indices jkl which specify the local environment of the pair: j is the number of neighbours
common to both spheres; k is the number of bonds (linking neighbouring spheres) between the
common neighbours; l is the number of bonds in the longest continuous chain formed by the k
bonds between the j common neighbours. Different types of pairs are associated with different
types of local order. For instance the 555 is a configuration of seven spheres arranged in a close
packing typical of icosahedral order. On the other hand, 421 and 422 are characteristic of fcc
and hcp order. Computer simulations of hard sphere packing show that during densification
(from ρ = 0.56 to 0.64) the relative number of 555 and 544 pairs almost double whereas the
number of 421 and 422 remain nearly constant suggesting an increase in the local icosahedral
order in such systems [30]. However, the results strongly depend on the threshold distance
within which two spheres are considered as bonded. It appears therefore worthless to study
the local structure in such detail when results are strongly dependent on the assumption for
the neighbouring criteria. On the other hand, a very interesting issue in these systems is
the possible occurrence of incomplete icosahedral configurations which can be studied by
analysing configurations made up of seven spheres arranged in a pentagonal ring around a
couple of neighbouring spheres (the ‘555’ configuration). Such a configuration is indeed a
‘piece’ of an icosahedron and it is therefore a good guide for understanding whether icosahedral
configurations play any significant role in the dynamical formation and in the static organization
of such structures. But we observe [10] that such configurations are present only in very small
fractions (from 0.01 to 0.1%; see table 3), indicating therefore that this kind of close packed
local arrangement has very little statistical significance and no relevant physical importance.
This observation is in agreement with the results from the (Q4, Q6) analysis in section 8 which
does not reveal any significant icosahedral symmetry. A further demonstration of this comes
from the study of the local volume fractions. In [9, 10] we observe that out of a total number of
more than 209 000 local Voronoı̈ configurations only 14 have volume fractions above 0.74 (the
fcc one has 0.740, 5 . . . and the icosahedral arrangement has 0.75 . . .). Furthermore, we found
that across the samples A–F only 2% of the Delaunay configurations are closed tetrahedra.
This reveals that close packed configurations such as the icosahedral one, and also the fcc cell
or the regular tetrahedra, play no relevant role in these systems.

9.3. Dihedral angle distribution

A further step toward the understanding of which kinds of local configurations are present in
theses systems can be made by analysing the distribution of dihedral angles between common
neighbours around a given couple of touching spheres. We have already calculated above
the number of common neighbours and shown that the most frequent configurations are the
arrangements with four and five common touching spheres. We now study how these spheres
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Figure 13. Dihedral angle distribution (x axis: angular degrees; y axis: renormalized frequencies).
The vertical lines indicate the angles θ = n arccos(1/3) (and 360 − θ ) with n = 1, 2, 3, 4, 5
(tetrahedral packings). The dashed lines are at the angles θ = n360/5 (n = 1, 2, 3, 4), which will
correspond to icosahedral configurations.

are distributed inside this common ring. In [10] we considered a triangle formed between two
spheres in contact and one common neighbour and we measured the dihedral angles between
such a triangle and all the other triangles formed with the other common neighbours. The
resulting distribution of angles is shown in figure 13. This figure shows a distribution which
is symmetric in θ and 360 − θ . The largest peak is at θ = arccos(1/3) = 70.5 . . . (and
360 − arccos(1/3) = 289.4 . . .) which is the dihedral angle in a regular tetrahedron. The
smaller peak is at θ = 2 arccos(1/3) = 141.0 . . . (and 218.9 . . .) which corresponds to a
configuration with two touching tetrahedra. The two peaks for 3 arccos(1/3) = 211.5 . . . and
4 arccos(1/3) = 282.1 . . . are not clearly visible, being in the same regions as the larger peaks,
but a small peak at 5 arccos(1/3) = 352.6 . . . (7.356) is visible. This clearly indicates that
the common neighbours tend to gather together in the circular ring. Indeed, the case with a
uniform angular repartition of common neighbours will lead to a rather different structure of
the angular distribution with peaks at nπ/3, nπ/4 and nπ/5, with n = 1, 2, 3, 4, . . ., peaks
that are not visible in the empirical distributions in figure 13. It is interesting to note that,
similarly to the case for the radial distribution function, the relative heights of the peaks are
sensitive to the sample density. But in this case the variations are much less evident than for
the g(r).

10. Geometry and structural arrest

In the previous sections we studied the geometrical structure of the disordered sphere packing
at rest. Here we try to infer information on the possible dynamical mechanisms which take
place during compaction and produce such static structures. The background idea is that the
static structure that we are studying empirically is one of several possible inherent states in
which the system can be found at the end of its dynamical evolution. Hereafter, when we refer
to a dynamics, we imagine a kind of molecular dynamics, where therefore a temperature is
well defined and a thermodynamical approach can be used. Following a theoretical approach
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recently developed [64, 65], we can image the system dynamics, before the structural arrest,
developing through configurations which are in the basin of attraction of this final inherent
structure. Under this assumption a (thermo)dynamical approach toward this configuration can
be reconstructed by performing a virtual, uniform expansion of the system size, reducing in this
way the effective density. Such a virtual expansion unjams the spheres allowing them to move
in a free volume around the inherent state positions. This is a way to explore the phase space
in the basin of attraction associated with the given inherent state. The amount of free space for
each sphere will depend on the shape and size of the (expanded) Voronoı̈ cell built around the
inherent state configuration. If we consider a uniform expansion by a relative, adimensional,
factor h, the volume of the system will change from V to V h3. Therefore the factor of expansion
is related with the effective density by h = (ρα/ρ)1/3 (with ρα the density of the inherent state
α). The volume of each given Voronoı̈ cell vi around the sphere i will also expand by a factor
h becoming: vα

i → vα
i h3. As a consequence of the expansion, the sphere in the cell i will

acquire a free volume which can be approximated as uα
i = vα

i (h − 1)3 = vα
i [(ρα/ρ)1/3 − 1]3.

Within a free-volume-like approximation [65] the partition function associated with this basin
of attraction is Qα = ∏

i uα
i . The partition function for the thermodynamic system of spheres

is the sum over the contributions from all the inherent states which contribute to such a state:

Q =
∑

α

∏

i

uα
i =

∑

α

[(ρα/ρ)1/3 − 1]3N
∏

i

vα
i . (10)

The thermodynamical relation P = kBT (∂ ln Q/∂V )N,T can now be used to calculate P V
NkB T

as a function of the density ρ (the equation of state), yielding for the compressibility factor
PV

kB NT
=

∑

α

wα(ρ)

1 − ( ρ

ρα )1/3
; (11)

with wα(ρ) the relative weight of the inherent state α at the density ρ: wα(ρ) = Qα/Q. The
calculation of such weights was undertaken in [64, 65] within a ‘cell theory’ approach, and
this will be the topic of a future more detailed paper [66]. Here let us remark that equation (11)
predicts a structural arrest at the largest ρα when the system is no longer able to sample other
denser inherent states. This is what is happening at the maximal compaction (ρ = 0.74 . . .)
when no denser states are possible. However, a different scenario can be considered: at a
certain stage of the compaction the system can be driven into a configuration from which it
cannot escape without the use of a very large amount of energy, which in turn implies very
long relaxation times. It is therefore dynamically ‘trapped’ within the basin of attraction of
the inherent state α and eventually it will be driven to a structural arrest in a jammed state at
ρ = ρα .

From the analysis of the inherent states A–F, it is possible to understand whether the
system is indeed dynamically trapped within these states and therefore to obtain insight into
the dynamical process which has led to such a state. In [9, 10] a quantity called the ‘escape
probability’ was calculated. This is the probability that a sphere can move outward from a
given local configuration without displacing the positions of its neighbours. Clearly, when
such a move is possible, the system can change its geometrical configuration by means of
local moves only. This implies that it can dynamically change the basin of attractions and
explore the phase space with low energy moves and short relaxation times. In contrast, when
the escape probability is zero, a structural rearrangement requires the displacement of a larger
number of spheres and the system is more likely to be trapped inside the basin of attraction of
this inherent configuration for longer relaxation times. Specifically, in [9, 10] we calculated
the gaps between neighbouring spheres and evaluated the size of the largest gap for each local
configuration surrounding a given sphere. This quantity is computed by constructing circles
through the centres of the Delaunay simplices incident on the central sphere. The central
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Figure 14. Relative number of configurations with a gap between neighbouring spheres larger
than g.

sphere can ‘escape’ from this configuration only if its diameter (d) is smaller than or equal
to the largest radius of such circles. The relative number of local configurations with gaps
larger than or equal to a threshold size x is reported in figure 14 for the six samples A–F.
We find that all the samples with ρ > 0.6 (C–F) have no configuration which allows the
central sphere to ‘escape’, whereas samples A and B have few local configurations with gaps
larger than d but seem statistically irrelevant (<0.1%). This strongly suggests that around
ρ ∼ 0.58–0.6 an important phase in the system dynamics reaches an end: above this density,
local readjustments involving only the displacement of a single sphere are forbidden. The
particle mobility is constrained mostly to within the Voronoı̈ cell and the system compaction
can proceed only by involving the collective and correlated readjustment of a larger set of
spheres. At this stage the system can no longer sample the whole phase space and it is trapped
within the basin of attraction of the inherent state and eventually will reach a structural arrest
at ρ = ρα .

For a given density ρ, we can study the system dynamics in the basin of attraction of an
inherent state α by virtually expanding the inherent structure by a factor h = (ρα/ρ)1/3 (ρ �
ρα). Within the selected basin of attraction the sizes of the gaps between neighbouring cells
scale with the expansion factor h plus a quantity (h −1)d which is the available space in which
the spheres can freely displace around the average position (h > 1). From the distribution of
maximal gaps between neighbouring spheres at the inherent state (h = 1) we can therefore
retrieve the distribution of maximal gaps when the system has been expanded by any factor h.
The escape probability associated with a system in the basin of attraction of the inherent state
α is given by the relative number of local configurations with maximal gaps larger than d at
a given h. This corresponds to the relative number of inherent configurations with maximal
gaps larger than (2 − h)d/h. Applying this criterion to the fcc crystalline arrangement one
can calculate that a system in the basin of attraction of the inherent state associated with this
crystalline packing becomes trapped with an escape probability equal to zero for densities
larger than π

√
18(2 +

√
3)3/64 = 0.6014 . . .. The same criterion can be applied to the

inherent structures A–F to obtain the density ρ at which such finite systems become trapped.
In figure 15 the escape probabilities (the number of local configurations with gaps larger than
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Figure 15. Escape probability versus density for systems in the basin of attraction of the inherent
states A–F. The vertical line indicates the density above which the escape probability becomes zero
in the fcc packing.

(2 − h)d/h divided by the total number of local configurations) for the six samples A–F at
various expansions h are reported as a function of the sample ‘virtual’ densities (ρ = ρα/h3).
We observe that all the samples have escape probabilities which decrease fast with the density
and they have become smaller than 10−2 already for densities around 0.5. The probabilities
continue to decrease between densities 0.5 and 0.55 where they become zero for samples E
and F. On the other hand for samples A, B, C the probabilities go to zero around 0.6. Sample
D shows a different behaviour, becoming zero above 0.6, but this is likely to be caused by a
defect in the sample. Indeed, the number of configurations in the sample is 1.5 × 104, which
means that probabilities below 10−3 refer to only a few open configurations in the sample.

In principle, a complete study of the system densification dynamics requires information
about all the accessible inherent states and their relative weights. This clearly goes beyond the
scope of the present paper and it will be the topic of following works. However, let me note
that the results strongly suggest that for densities below ∼0.6 the system can still explore the
configuration space and a sufficiently slow cooling dynamics should take the system to crystal-
lization. On the other hand, beyond the density π

√
18(2+

√
3)3/64 = 0.6014 . . ., the system is

trapped in the basin of attraction of the reference packing (crystalline or disordered). Therefore
if the system is compressed above 0.601, in a way which avoids the crystalline branch, then
any cooling dynamics will drive it to a structural arrest in a disordered jammed configuration.

11. Conclusions

The granular organization at local level was first studied by analysing the fluctuations of the
local volumes (section 3) associated with two ways of subdividing the volume into local parts:
the Delaunay and the Voronoı̈ partitions. It has been pointed out that the local volumes have
skewed distributions with power law tails for the large volumes. By following Edwards [22–24]
this should allow one to retrieve the ‘granular compactivity’. However, it has been shown that
Delaunay and Voronoı̈ volumes follow rather different distributions, posing serious questions
as regards which kind of space partition is appropriate in these studies. The local topology
at grain level has been studied in section 4 where a clear dependence between the number of
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neighbours and the sample density has been pointed out. It has been discussed that this might
suggest a scenario where a rigid percolation takes place around ρ = 0.55 where the average
number of contacts per sphere is nc = 4. The study of the local rotational symmetry (section 8)
shows that a very large fraction of the local configurations are in a region of (Q4, Q6) around
the values (0.25, 0.45) which is distinct from any known symmetry. This, together with the
analysis of local volume fractions and correlations, excludes the possibility of the existence
of any partial crystallization in the samples and also excludes the possibility of any relevant
icosahedral order in the packing. The distributions of the dihedral angles (section 9) indicate
that a typical local configuration is made up of four or five spheres which tend to gather
together in a compact portion of a ring around a common pair of neighbours. The hierarchical
structure has been investigated both geometrically (section 7) and topologically (section 6); the
indication is that these systems are disordered but not random and a characteristic organization,
which depends on the sample density, is present both at local and global level. We pointed out
that the topological density in disordered sphere packings is always larger than the topological
density in the corresponding lattice sphere packings. Such a larger topological density is an
indication that the contact network is more compact in disordered systems despite the fact
that the geometrical density is lower. This might have important implications for the system
stability and resilience against perturbations and shocks. The dynamics toward structural
arrest has been analysed in section 10 where it has been pointed out that above the density
0.601 movement of a sphere away from its local environment is no longer possible without
displacing the first neighbours. It has been commented that this implies a dynamical trapping
of the system in the basin of attraction of the relative inherent state leading to a structural arrest.
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[51] Aste T, Boosé D and Rivier N 1996 Phys. Rev. E 53 6181
[52] Aste T 1999 Foams and Emulsions ed J F Sadoc and N Rivier (Amsterdam: Kluwer) pp 497–510
[53] Grosse-Kunstleve R W, Brunner G O and Sloane N J A 1996 Acta Crystallogr. A 52 879
[54] Ohlenbusch H, Aste T, Dubertret B and Rivier N 1998 Eur. Phys. J. B 29 211
[55] Aste T, Di Matteo T and Hyde S T 2005 Physica A 346 20 (Preprint cond-mat 0408443)
[56] O’Keeffe M and Hyde B G 1996 Crystal Structures, Patterns and Symmetry vol 1 (Washington, DC:

Mineralogical Society of America)
[57] Bideau D and Hansen A (ed) 1993 Disordered and Granular Media (Amsterdam: North-Holland)
[58] Kansal A R, Torquato S and Stillinger F H 2002 Phys. Rev. E 66 041109
[59] Donev A, Torquato S, Stillinger F H and Connelly R 2004 Preprint cond-mat/0408550
[60] Richard P, Oger L, Troadec J-P and Gervois A 1999 Phys. Rev. E 60 4551
[61] Richard P, Oger L, Troadec J-P and Gervois A 1999 Europhys. Lett. 48 415
[62] Truskett T M, Torquato S and Debnedetti P G 2000 Phys. Rev. E 62 993
[63] Voronoı̈ G 1908 J. R. Angew. Math. 134 198
[64] Aste T and Coniglio A 2003 J. Phys.: Condens. Matter 15 S803
[65] Aste T and Coniglio A 2004 Europhys. Lett. 67 165
[66] Aste T and Coniglio A 2004 in preparation


	1. Introduction
	2. Four packing density regions
	3. Local volume fluctuations
	4. Number of spheres in contact
	5. Stability, rigidity and jamming
	6. Contact network: the topological structure beyond first neighbours
	7. Radial distribution function
	8. Local orientation
	9. Geometrical organization around a sphere
	9.1. Voronoi shapes
	9.2. Common neighbours
	9.3. Dihedral angle distribution

	10. Geometry and structural arrest
	11. Conclusions
	Acknowledgments
	References

